61 research outputs found

    An End-to-End Bitstream Tamper Attack Against Flip-Chip FPGAs

    Get PDF
    FPGA bitstream encryption and authentication can be defeated by various techniques and it is critical to understand how these vulnerabilities enable extraction and tampering of commercial FPGA bitstreams. We exploit the physical vulnerability of bitstream encryption keys to readout using failure analysis equipment and conduct an end-to-end bitstream tamper attack. Our work underscores the feasibility of supply chain bitstream tampering and the necessity of guarding against such attacks in critical systems

    SoC Security Properties and Rules

    Get PDF
    A system-on-chip (SoC) security can be weakened by exploiting the potential vulnerabilities of the intellectual property (IP) cores used to implement the design and interaction among the IPs. These vulnerabilities not only increase the security verification effort but also can increase design complexity and time-to-market. The design and verification engineers should be knowledgeable about potential vulnerabilities and threat models at the early SoC design life cycle to protect their designs from potential attacks. However, currently, there is no publicly available repository that can be used as a base to develop such knowledge in practice. In this paper, we develop ‘SoC Security Property/Rule Database’ and make it available publicly to all researchers to facilitate and extend security verification effort to address this need. The database gathers a comprehensive security vulnerability and property list. It also provides all the corresponding design behavior that should be held in the design to ensure such vulnerabilities do not exist. The database contains 67 different vulnerability scenarios for which 105 corresponding security properties have been developed till now. This paper reviews the existing database and presents the methodologies we used to gather vulnerabilities and develop such comprehensive security properties. Additionally, this paper discusses the challenges for security verification and the utilization of this database to overcome the research challenges

    What is All the FaaS About? - Remote Exploitation of FPGA-as-a-Service Platforms

    Get PDF
    Field Programmable Gate Arrays (FPGAs) used as hardware accelerators in the cloud domain allow end-users to accelerate their custom applications while ensuring minimal dynamic power consumption. Cloud infrastructures aim to maximize profit by achieving optimized resource sharing among its cloud users. However, the FPGAs\u27 reconfigurable nature poses unique security and privacy challenges in a shared cloud environment. In this paper, we aim to understand the interactions between FPGA and the host servers on the cloud to analyze FaaS platforms\u27 security. We propose a vulnerability taxonomy based on the runtime attributes of the FaaS platforms. The taxonomy aims to assist the identification of critical sources of vulnerabilities in the platform in allowing focused security verification. We demonstrate the proof-of-concept by characterizing the potential source of vulnerabilities in the Stratix-10 FaaS platforms. We then focused on only one major source to perform more focused verification. The proof-of-concept is demonstrated by identifying the potential source of vulnerabilities in the Stratix-10 FaaS platforms. Then, to conduct more focused verification, we narrowed our focus to only one major source. It aided in the identification of several low-level software vulnerabilities. The discovered vulnerabilities could be remotely exploited to cause denial-of-service and information leakage attacks. The concerned entities have released software updates to address the vulnerabilities

    Defeating CAS-Unlock

    Get PDF
    Recently, a logic locking approach termed `CAS-Lock\u27 was proposed to simultaneously counter Boolean satisfiability (SAT) and bypass attacks. The technique modifies the AND/OR tree structure in Anti-SAT to achieve non-trivial output corruptibility while maintaining resistance to both SAT and bypass attacks. An attack against CAS-Lock (dubbed `CAS-Unlock\u27) was also recently proposed on a naive implementation of CAS-Lock. It relies on setting key values to all 1\u27s or 0\u27s to break CAS-Lock. In this short paper, we evaluate this attack\u27s ineffectiveness and describe a misinterpretation of CAS-Lock\u27s implementation

    LLM for SoC Security: A Paradigm Shift

    Full text link
    As the ubiquity and complexity of system-on-chip (SoC) designs increase across electronic devices, the task of incorporating security into an SoC design flow poses significant challenges. Existing security solutions are inadequate to provide effective verification of modern SoC designs due to their limitations in scalability, comprehensiveness, and adaptability. On the other hand, Large Language Models (LLMs) are celebrated for their remarkable success in natural language understanding, advanced reasoning, and program synthesis tasks. Recognizing an opportunity, our research delves into leveraging the emergent capabilities of Generative Pre-trained Transformers (GPTs) to address the existing gaps in SoC security, aiming for a more efficient, scalable, and adaptable methodology. By integrating LLMs into the SoC security verification paradigm, we open a new frontier of possibilities and challenges to ensure the security of increasingly complex SoCs. This paper offers an in-depth analysis of existing works, showcases practical case studies, demonstrates comprehensive experiments, and provides useful promoting guidelines. We also present the achievements, prospects, and challenges of employing LLM in different SoC security verification tasks.Comment: 42 page

    A Comprehensive Survey on Non-Invasive Fault Injection Attacks

    Get PDF
    Non-invasive fault injection attacks have emerged as significant threats to a spectrum of microelectronic systems ranging from commodity devices to high-end customized processors. Unlike their invasive counterparts, these attacks are more affordable and can exploit system vulnerabilities without altering the hardware physically. Furthermore, certain non-invasive fault injection strategies allow for remote vulnerability exploitation without the requirement of physical proximity. However, existing studies lack extensive investigation into these attacks across diverse target platforms, threat models, emerging attack strategies, assessment frameworks, and mitigation approaches. In this paper, we provide a comprehensive overview of contemporary research on non-invasive fault injection attacks. Our objective is to consolidate and scrutinize the various techniques, methodologies, target systems susceptible to the attacks, and existing mitigation mechanisms advanced by the research community. Besides, we categorize attack strategies based on several aspects, present a detailed comparison among the categories, and highlight research challenges with future direction. By underlining and discussing the landscape of cutting-edge, non-invasive fault injection, we hope more researchers, designers, and security professionals examine the attacks further and take such threats into consideration while developing effective countermeasures
    • …
    corecore